Isolation and characterization of bacterial community in the gut of the Androctonus crassicuda, Hottentota schach and Mesobuthus epeus scorpions

Document Type : Research articles

Authors

1 Razi vaccine and serum research insititue Ahvaz

2 Shahid Chamran University

3 Razi vaccine and serum research insititue karaj

Abstract

Scorpions (order: Scorpiones) are widely distributed predatory arachnids and highly resistant to environmental conditions. Some factors such as microorganisms of internal cavity of scorpions may affect their biology. In addition, microbial communities of gut effect on immunity system and nutrition in arthropoda. However, few data are availablefor the microbiota diversity of scorpion gut. Thus, the present study aimed to evaluate the microbial diversity of scorpions related to the Buthidae family which is considered as the most important scorpions from south-west of Iran by chemical test and sequence analysis of 16S rRNA gene. To this aim, both gram positive and negative bacteria were detected from the gut of Androctonus crassicuda, Hottentota schach and Mesobuthus epeus. The staphylococcus saprophyticus, Bacillus cereus, Bacillus firmus, Corynebacterium variabilis, Pseudomonas putida, Pseudomonas oryzihabitans, Enterobacter aerogenes, Pantoe aagglomerans, Serrati aureilytica, staphylococcus gallinarum were isolated from the gut of scorpion. The isolated bacteria may have symbiotic or pathogenic relationships with scorpions. The present study was first considered the gut of buthide scorpion of Iran and can provide a reference for future studies on the digestive system microbiota from other scorpions by determining the role of these bacteria in the biology of scorpion.

Keywords


Ashida, H., Ogawa, M., Kim, M., Mimuro, H., Sasakawa, C., 2012. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 8, 36–45.
Broderick NA, Raffa KF, Goodman RM & Handelsman J., 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods. Appl Environ Microbiol 70, 293–300.
Clarrdige, Jill E., 2004. Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Review 17.4, 840-62.
Corby-Harris, V., Pontaroli, A.C., Shimkets, L.J., Bennetzen, J.L., Habel, K.E., and Promislow, D.E., 2007. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73, 3470–3479.
Desai, Meera J., and Daniel W. Armstrong., 2003. Separation, Identification, and Characterization of Microorganisms by Capillary Electrophoresis. Microbiology and Molecular Biology Reviews 67,138-151.
Dillon, R., Charlety , K., 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Reaserch in microbiology 153(8), 503-509.
Dong, Y., Manfredini, F., Dimopoulos, G., 2009. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5, 5-8.
Ehret-Sabatier, L., Loew, D., Goyffon, M., Fehlbaum, P., Hoffmann, JA., van Dorsselaer, A., Bulet, P., 1996. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J.Biochem 47, 37-44
Engel, P., and Moran, N.A., 2013. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol Rev 37,699–735.
Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L., Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I., Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., Daffonchio, D., 2007. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl. Acad. Sci 104, 9047–9051.
Gaio, Ade O., Gusmão, D.S., Santos, A. V., Berbert-Molina, M. A., Pimenta, P. F., and Lemos, F.J., 2011. Contribution of Midgut Bacteria to Blood Digestion and Egg Production in AedesAegypti (diptera: culicidae) (L.). Parasites and Vectors 4,105
Gusmso, A., Danyelle S., Mauricio Bacci Jr., Berbert-Molina A.M., Lemos, F.A., 2010. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Tropica 115, 275–281.
Garrity, G., Boone, M., David, R. and Richard, W. Bergy, s., 2004. Manual of systemstic bacteriology. 4th Ed. Springer pub.Mishigan.
Hadley, Neil F., 1974. Adaptational Biology of Desert Scorpions. Journal of Arachnology. 2, 11-23.
Iverson, K., Bromel, M.C.B., Anderson, A.W., Freeman, T.P., 1984. Bacterial symbionts in the sugar beet root maggot. Tetanops myopaeformis (von Roder). Appl. Environm. Microbiol 47, 22–27.
Jalali, A.,and Rahim, F., 2014. Epidemiological Review of Scorpion Envenomation in Iran. Iranian Journal of Pharmaceutical Research 13 (3), 743-756.
Kohler, T., Dietrich,C., Scheffrahn. RH. Brune, A., 2012. Highresolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78, 4691–4701
Lourenco, W. R., 2001. The Scorpion Families and their Geographical Distribution. Journal of Venomous Animals and Toxins 7 (1), 3-23.
Mason KL, Stepien TA, Blum JE, Holt JF, Labbe NH, Rush JS,Raffa KF & Handelsman J., 2011. From commensal topathogen: translocation of Enterococcus faecalis from themidgut to the hemocoel of Manduca sexta. MBio 2, e00065–11.
Mullen, Gary R., and Scott A. Stockwell., 2009. Scorpions (Scorpiones). 2nd ed. San Diego, Elsevier 397-409.
Navidpour, Sh., 2015. An annotated checklist of scorpions in south and southwestern parts of Iran. International Journal of Fauna and Biological Studies 2 (3), 09-15.
Navidpour, SH., Kovařik, F., Soleglad, M &Fet, V., 2008. Scorpions of Iran (Arachnida, Scorpiones). Part I. Khoozestan Province. Euscorpius No, 65
Polis, Gary A., 1990. The Biology of Scorpions. Stanford: Stanford University Press.
Rodriguez de la Vega, RC., Garcia, BI., D'Ambrosio, C., Diego-Garcia, E., Scaloni, A., Possani.LD., 2004. Antimicrobial peptide induction in the hemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. Cell Mol Life Sci 12, 1507-1519.
Schloss, PD., Delalibera, Jr., Handelsman, J., Raffa, KF., 2006. Bacteria associated with the guts of two wood-boringbeetles: Anoplophoraglabripennis and Saperdavestita (Cerambycidae). Environ Entomol 35,625–629.
Undheim, Eivind A. B., Bryan G. Fry., Glenn F. King., 2015. Centipede Venom: Recent Discoveries and Current State of Knowledge. Toxins 7, 679-704.
Vanthournout, B., Hendrickx, F., 2015. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider. PLoS One, 10.2
Wang, B. J., Liu, Y., Jiang, J. T., Liu, B., Liu, S. J., 2007. Microbial Diversity in Scorpion Intestine (ButhusmartensiiKarsch). Wei Sheng Wu XueBao 47, 888-893.
Werren, J.H., Baldo, L., and Clark, M.E., 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6, 741–751.
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., and Rossello-Mora, R., 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol1 2, 635–645.
Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.J., Kim, M.S., Park, D.S., and Bae, J.W., 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80, 5254–5264.
CAPTCHA Image