
Molavi, F.a, Darvish, J.*a,b, Haddad, F.b and Matin, M.M.a,c

1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2 Rodentology Research Department, Institute of Applied Zoology Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

(Received: 13 July 2015; Accepted: 25 April 2016)

The highly conserved morphology and chromosomal structures of house mouse, *Mus musculus*, provides a good model for chromosomal studies. Sex-autosome translocations is one of the rarest chromosomal rearrangements among mammals and therefore sex-autosome translocations has been offered as accurate taxonomic markers to identify species with similar morphological traits. In this study, we described the outcome of a comprehensive cytogenetic survey of the house mouse, *Mus musculus*, in the eastern Iran using G banding method. Interestingly, results showed the presence of a new cytotype of X-autosome translocation of house mouse which was found in 18 specimens of Birjand region in the eastern Iran. Larger size of chromosomal translocation was observed in Chromosome X. We used karyotype asymmetry method as a powerful statistical parameter to extract coefficient of variation of chromosome length. Based on the data of this study, the results, Birjand population did not show asymmetry in all Asymmetry indexes (AI, DI, As%, A, A2, A1 and Syi %), and this result confirmed translocations in Birjands’ chromosomes as well.

Key words: Cytotaxonomy, systematic, Chromosome structure, House Mouse, Karyology, Iran, Middle East.

INTRODUCTION

The genus *Mus* has been subjected in several chromosomal evolution studies (Britton-Davidian et al., 2000; Veyrunes et al., 2006; Pálek et al., 2005). This genus composed of at least 40 species which classified to four subgenera. However, one of the subgenera is house mouse, *Mus musculus*, which has four subspecies in Iran, including *M. m. domesticus*, *M. m. musculus*, *M. m. castaneus* and *M. m. bactrianus*. These subspecies have the same standard karyotype with 20 pairs of acrocentric chromosomes (Silver, 2001). In spite of extensive study of molecular markers have been used on subspecies of house mouse, still relationships between the subspecies of house mouse are unclear (Vanlerberghhe et al., 1986; Orth et al., 1996; Darvish et al., 2006; Rajabi-Maham et al., 2007). With respect to rare genomic changes of chromosomal rearrangements, probably has been considered as ideal candidates method to elucidate the taxonomic issue (Rokas and Holland, 2000; Murphy et al., 2004; Wienberg, 2004). However, chromosomes could be distinguished using various staining protocols such as
banding patterns (Iaea, 2001). Hence, several methods of chromosomal painting have been suggested, among them Fluorescence in situ hybridization (FISH) is considered powerful method of comparative chromosome painting to detect chromosome homologies between species and subspecies (Li et al., 2004). FISH techniques and chromosome-specific multicolor techniques are spectral karyotyping (SKY) improve the characterization of aberrant chromosomes that are not recognized using conventional banding methods. Giemsa-banding staining or G-banding Methods is rapid and economical way to study chromosomes of house mouse. This method is based on the principal of chromatin denaturation or mild enzymatic digestion that is followed by staining with a DNA-binding dye (Craig and Bickmore, 1993). Previous studies of wild house mice showed some non-standard karyotypes in house mice from some regions of Europe, South America and Northern Africa, this results suggested chromosomal differentiations were powerful marker for recognition this subspecies and species (Adolph and Klein, 1981; Wallace, 1981; Searle, 1982). All of the non-standard karyotypes have arisen from simple fusion events that led to bind two standard chromosomes of house mouse in the centromeric region (Adolph and Klein, 1981). Generally, a few sex-autosome translocations are known in mammalian so far (Dobingny et al., 2004; Mudry et al., 2001 and Fredga, 1976).

In comparative karyology, karyotype asymmetry has been proposed on the basis of predominance of chromosomes with terminal/sub-terminal centromeres (intra-chromosomal asymmetry) and making karyotype more heterogeneous (inter-chromosomal asymmetry). This comparative study has been introduced for the first time by Levitsky (1931). Stebbins (1971), proposed a quasi-quantitative method to estimate karyotype asymmetry in twelve categories which taking them in to four class, from 1 to 4, the different class were indicated with respect to the largest and smallest chromosome of the complement (A-C) as well as four class (1-4) determined by the proportion of chromosomes with arm ratio more than 2:1. Concerning inter-chromosomal asymmetry, which is due to heterogeneity among chromosome sizes in a complement, other researchers proposed quantitative estimation methods in the following years. This is the case of the Rec index (Greilhuber and Speta, 1976; Venora et al., 2002), the A2 index (Romero Zarco, 1986), the R ratio (Siljak-Yakovlev, 1996) and the CVCL (Lavania and Srivastava, 1992; Watanabe et al., 1999; Paszko, 2006). The latter, coefficient of variation actually is a statistically correct parameter and is able to capture even small variations among chromosome sizes in a complement (Lorenzo and Eroğlu, 2013).

The present study was aimed to use chromosomal analysis in order to clarifying the taxonomic status of the house mouse in the eastern Iran. We described a new cytotype of Mus musculus from Birjand in the eastern Iran. The findings provided new insights of evolution of sex-autosome translocations in the species.

MATERIAL AND METHODS

ANIMALS

During three years of filed works in 2012-2015, a total of 126 specimens of house mouse from 18 localities of Iran were examined (Table 1, and Figure 1). Mice were caught using Longworth live-traps in farm buildings. Six morphometric characters including the length of body, tail, ear, hind foot, the zygomatic index (ZI = width of molar process / width of upper part of zygomatic arch) and the ration between tail length to head and body length (tail length / head body length = T / HB) were measured and the four subspecies were identified following Gündüz et al., 2000; Darvish, 2004; Darvish et al., 2006; Bonhomme et al., 2007; Darvish et al., 2008; Shabani et al., 2010; Siahsarvie et al., 2012; Rajabi-Maham et al. 2012 (for more details, see Table 1).
TABLE 1. Locality and taxon name of studied individuals of *M. musculus* in this study.

<table>
<thead>
<tr>
<th>Locality</th>
<th>No.</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Taxon</th>
<th>Ref. used for identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torbate Jam</td>
<td>5</td>
<td>35° 14' 38"</td>
<td>60° 37' 21"</td>
<td>M. m. musculus</td>
<td>Siahsarvi et al. (2012), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Kakkh</td>
<td>8</td>
<td>34° 08' 39"</td>
<td>58° 50' 37"</td>
<td>M. m. musculus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Daraz</td>
<td>5</td>
<td>37° 26' 40"</td>
<td>59° 6' 29"</td>
<td>M. m. musculus</td>
<td>Darvish et al. (2006)</td>
</tr>
<tr>
<td>Sarakhs</td>
<td>5</td>
<td>36° 32' 42"</td>
<td>61° 9' 28"</td>
<td>M. m. musculus</td>
<td>Siahsarvi et al. (2012), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Mashhad</td>
<td>18</td>
<td>36° 18' 0"</td>
<td>59° 36' 0"</td>
<td>M. m. musculus</td>
<td>Siahsarvi et al. (2012), Shabani et al. (2010), Bonhomme et al. (2007), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Esfarayen</td>
<td>5</td>
<td>37° 73' 03"</td>
<td>56° 45' 23"</td>
<td>M. m. musculus</td>
<td>Darvish et al. (2006), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Gonabad</td>
<td>4</td>
<td>34° 21' 10"</td>
<td>56° 45' 23"</td>
<td>M. m. musculus</td>
<td>Shabani et al. (2010), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Kalat</td>
<td>7</td>
<td>36° 59' 33"</td>
<td>61° 23' 10"</td>
<td>M. m. musculus</td>
<td>Darvish et al. (2006), Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Birjand</td>
<td>15</td>
<td>32° 87' 0"</td>
<td>60° 36' 0"</td>
<td>M. m. bacterianus</td>
<td>Darvish (2008), Shabani et al. (2010)</td>
</tr>
<tr>
<td>Tabas</td>
<td>8</td>
<td>33° 36' 10.9"</td>
<td>57° 50' 37"</td>
<td>M. m. castaneus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Kerman</td>
<td>8</td>
<td>31° 30' 10"</td>
<td>56° 31' 23"</td>
<td>M. m. castaneus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Rask</td>
<td>3</td>
<td>26° 14' 13"</td>
<td>56° 45' 23"</td>
<td>M. m. castaneus</td>
<td>Shabani et al. (2012)</td>
</tr>
<tr>
<td>Qasr-e Qand</td>
<td>3</td>
<td>36° 14' 54"</td>
<td>61° 12' 57"</td>
<td>M. m. castaneus</td>
<td>Siahsarvi et al. (2012) & Darvish (2008) & Bonhomme et al. (2007)</td>
</tr>
<tr>
<td>Zahedan</td>
<td>5</td>
<td>36° 51' 46"</td>
<td>60° 51' 47"</td>
<td>M. m. castaneus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Zabol</td>
<td>9</td>
<td>25° 17' 31"</td>
<td>60° 64' 35"</td>
<td>M. m. bacterianus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Chabahar</td>
<td>4</td>
<td>28° 13' 16"</td>
<td>61° 12' 57"</td>
<td>M. m. castaneus</td>
<td>Rajabi-Maham et al. (2012)</td>
</tr>
<tr>
<td>Khosh</td>
<td>5</td>
<td>36° 20' 48"</td>
<td>58° 10' 48"</td>
<td>M. m. musculus</td>
<td>Darvish et al. (2006), Rajabi-Maham et al. (2012)</td>
</tr>
</tbody>
</table>

FIGURE 1. Map samples of *M. musculus* used in this study. Black boxes were referred to locality. Details of the samples are given in Table 1.

KARYOTYPE AND CHROMOSOME IDENTIFICATIONS
Chromosome preparations of all specimens of the Iranian house mouse were made from bone marrow cells of yeast-stimulated animals with some modifications (Lee and Elder, 1980). Identification of chromosomes was accomplished by G-banding (Seabright, 1971). The nomenclature of chromosome morphology was followed Levan (1964) and Guerra (1986). The chromosomes were numbered on the basis of euchromatic long arms as per recommendations of the Committee on Standardized Genetic Nomenclature for mice (1972).

Karyotype analysis

A total of 50 to 100 metaphase spreads from each specimen were examined and at least 10 good chromosomal spreads were photographed using a 100x zoom digital CCD camera. Generally, 18 karyological characteristics of all specimens were prepared by Karyological Analysis software (version 1.2, 2010), all the data is given in Table 2. The relative length of each chromosome pair was expressed by the percentage of the absolute length of each chromosome pair which is divided to the sum of the absolute length of total chromosomes.

Induction of G-Bands

Metaphase slide preparation was made 10 to 14 days before banding then remove and bring them to room temperature just prior to banding. Then, grasp the slide with forceps and immerse it in a Coplin jar containing the 0.025% trypsin working solution for 8 to 10 sec. after that, They were kept in a mixture of sodium chloride and sodium citrate solutions (12 x SSC) at 60°C for 1 hr. Then, at the end of the incubation periods the slides were rinsed in several changes of 70% ethanol and then in 90% ethanol. Finally, the slides were then stained with Giemsa solution (pH = 7.0) for 8-10 min, washed briefly with distilled water, air dried and mounted in Permoun. The arrangement of chromosomes was checked according to the Committee on Standardized Genetic Nomenclature for Mice (1972).

Figure 2. Chromosome ideogram of the Iranian house mouse was made according to G-banding method.

Table 2. List of characters used for chromosome analysis.
A NEW CYTOTYPE OF THE IRANIAN HOUSE MOUSE

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Formula</th>
<th>Range</th>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2n Diploid number of chromosomes</td>
<td>sum of chromosomes</td>
<td>≥2</td>
<td>Nägeli, 1842</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Fn Fundamental number</td>
<td>number of visible major chromosomal arms per set of chromosomes</td>
<td>Fn ≤ 2 x 2n</td>
<td>Matthey, 1945</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Fna or An Autosomal fundamental number</td>
<td>number of visible major chromosomal arms per set of autosomes (non-sex-linked chromosomes).</td>
<td>Fna ≤ 2 x 2n</td>
<td>Matthey, 1945</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>A1 The intrachromosomal asymmetry index</td>
<td>[1 - \sum_{i=0}^{n} (p_i/q_i)/n]</td>
<td>0-1</td>
<td>Romero Zarco, 1986</td>
<td>P: long arm, q: short arm, and n: total of chromosome</td>
</tr>
<tr>
<td>6</td>
<td>A2 The interchromosomal asymmetry index</td>
<td>Scl/Xcl</td>
<td>0-1</td>
<td>Romero Zarco, 1986</td>
<td>Scl: Standard error of total chromosomal length. Xcl: Mean of total chromosomes</td>
</tr>
<tr>
<td>7</td>
<td>A The degree of asymmetry of karyotype</td>
<td>(\Sigma (p_i-q_i)/(p_i+q_i)/n)</td>
<td>0-1</td>
<td>Watanabe et al., 1999</td>
<td>P: long arm, q: short arm, n: total of chromosome</td>
</tr>
<tr>
<td>8</td>
<td>DI The dispersion index (a normalized measure of the dispersion of a probability distribution)</td>
<td>(D=\sigma^2/\mu)</td>
<td>>0</td>
<td>Lavania and Srivastava, 1992</td>
<td>(\sigma): variance, (\mu): mean</td>
</tr>
<tr>
<td>9</td>
<td>AI The asymmetry index</td>
<td>((\mu_x - \mu_y)\sqrt{\sigma_x^2 + \sigma_y^2}/\sigma_z^2)</td>
<td>0 < x ≤ 2.0: The asymmetry is weak. The distribution is relatively symmetrical. 2.0 < x ≤ 4.0: The asymmetry is moderate. The distribution is relatively asymmetrical. X > 4.0: The asymmetry is strong. The distribution is asymmetrical.</td>
<td>Paszko, 2006</td>
<td>P: long arm, q: short arm, (\sigma_x^2): variance of X, (\sigma_y^2): variance of Y</td>
</tr>
<tr>
<td>10</td>
<td>Cytotype An individual of a species that has a different chromosomal factor to another (e.g. haploid versus diploid)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>All.ch.L. All chromosome's length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>As% The karyotype asymmetry index</td>
<td>(Length of long arm in chromosome complements/Total sum of chromosome length in a set)x100</td>
<td>50-100</td>
<td>Arano, 1963</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>TF% The total form percent</td>
<td>Total of short chromosomal lengths/Total of chromosomal lengths</td>
<td>0-50</td>
<td>Huziwara, 1962</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Sy% The index of karyotype symmetry</td>
<td>Mm/Ml</td>
<td>-</td>
<td>Greilhuber and Speta, 1976, Venora et al. 2002</td>
<td>Mm: Mean length of the short arms. Ml: Mean length of long arms</td>
</tr>
<tr>
<td>15</td>
<td>Rec The index of chromosomal size resemblance</td>
<td>r=1-40, n=40</td>
<td>0-100</td>
<td>Greilhuber and Speta, 1976, Venora et al. 2002</td>
<td>CL: Length of total of chromosome. LC: Length of longest chromosome</td>
</tr>
<tr>
<td>16</td>
<td>SC Length of shortest Chromosome</td>
<td>micron</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>LC Length of longest Chromosome</td>
<td>micron</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Mpq Mean of chromosomal Length</td>
<td>micron</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>L/S Longest chromosome/shortest chromosome</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 3. Comparison of karyological records of the studied house mouse populations. Black color: *M. m. musculus*, Red color: Birjand (*Mus musculus bacterianus*), Blue color: *M. m. castaneus* and *M. m. bacterianus*.
RESULTS
(The G-banded karyotypes of the Iranian house mouse subspecies were determined for the first time in this study. All chromosomes of house mouse painted successfully, the comparison of G-banded patterns of all 126 individual of populations of house mouse showed the common pattern in chromosomal bands (Figure 2). All individuals of house mouse have totally a diploid number of \(2n=40\) with acrocentric chromosomes. Results showed no variation in the number and combination of Robertsonian fusions (i.e. fusion by the centromere of two non-homologous chromosomes). However, six mice chromosomes (3, 6, 9, 12, 19 and X) showed complete conservation of their bands and four chromosome (1, 4, 10 and 15) represented variations in the bands. Results represented specimens from Birjand region, the eastern Iran, which has one fusion involving the sex chromosomes and chromosome 1. The fusion could be represented a diagnostic signature for this special population (Figure 3). The karyotypic analyses indicated the presence of a large chromosome X in this locality and comparative cytogenetic map of the specimens showed that the translocation between band H in chromosome 1 and distal part of chromosome X (Figure 4). Asymmetry indexes indicated asymmetry karyotype in populations of Birjand; the finding confirmed disturbance in chromosomes sizes (Table 3). Chromosome 1 is the largest chromosome of the house mouse with 24 band and is relatively easy to recognize on the basis of the characters as follows: Regions C and H of chromosome 1 are characterized by clusters of almost equal size bands and similar colures, region E containing one gray band, regions B and D are light and region G is Dark. Chromosome X is similar to chromosome 2 in size and has16 band with two dark bands (C and E) and one light band between them (Kazumi et al., 2003)

DISCUSSION
In perspective of karyology, *Mus musculus* is usually stable with little or no variation in diploid number and chromosomal morphology. Standard karyotype of the house mouse is \(2n=40,\) NF=40 and NFa = 38 (Baydemir and Karoz, 2014; Silver, 2001; Mirabzadeh, 2001). Karyotype formulas and quantitative analyses have a great uniformity among populations of this species with exception populations of *Mus musculus domesticus* (Cazaux, 2014). This species formed a homogeneous group and mainly differed in the length of chromosome Y (Levan, 1962; Nesbitt and Francke, 1973). However, the G-bandings mentioned that many of the major bands contained minor bands and homologous chromosomes were paired according to this banding pattern (Nesbitt and Francke, 1973)
Figure 4. (A) G-banded chromosome 1 of the Iranian house mouse with comparative cytogenetic map between the specimens from a. Mashhad (Mus musculus musculus), b. Zabol (Mus musculus bacterianus), c. Kerman (Mus musculus castaneus) and d. Birjand (Mus musculus bacterianus). (B) G-banded chromosome X of the Iranian house mouse with comparative cytogenetic map between the specimens from a. Mashhad (Mus musculus musculus), b. Zabol (Mus musculus bacterianus), c. Kerman (Mus musculus castaneus) and d. Birjand (Mus musculus bacterianus).

1973; Cowell, 1984; Veyrunes et al., 2006). The chromosome X is one of the longest chromosomes that could be easily paired (Cowell, 1984; Graves et al., 2002; Levan, 1962; Mirabzadeh, 2001). The chromosome Y was small and constantly dark and the centromeric chromatin was not obvious (Cowell, 1984; Nesbitt and Francke, 1973; Sawyer et al., 1987; Mirabzadeh, 2001). According to our results, the chromosome numbers of the Iranian house mouse are the same with previous studies (Mirabzadeh, 2001; Silver, 2001).

Although the house mouse is the most widely studied mammal in terms of chromosomal evolution but comparisons studies between the subspecies of the house mouse are very scarce (Britton-Davidian et al., 2000; Capanna and Castiglia, 2004; Piálek et al., 2005). Our study is the first attempt to establish comparative chromosome maps in the Iranian house mouse. On one hand, some authors attributed the eastern populations of the Iranian house mouse to subspecies M. m. bacterianus (Boursot et al., 1996; Boissinot and Boursot, 1997). On the other hand, the others used the name M. m. castaneus or “M. (m) castaneus” for the populations (Prager et al., 1998; Siahsarvie et al., 2012; Rajabi-Maham et al. 2012). The studies emphasized challenging of taxonomic status in the eastern populations of the Iranian house mouse (Gündüz et al., 2000; Darvish, 2004; Darvish et al., 2006; Bonhomme et al., 2007; Darvish et al., 2008; Shabani et al., 2010; Siahsarvie et al., 2012; Rajabi-Maham et al. 2012). High heterozygosity of M. m. castaneus or “M. (m) castaneus” was observed in various markers like allozymes, nuclear gene sequences (Din et al., 1996; Bonhomme et al., 2007). Rajabi et al. (2012) described “polytypic” subspecies for M. m. castaneus. The house mouse population from the eastern Iran formed a complex of biogeographic scenario with the presence of
three important mitochondrial clades that are probably results of human activities (Rajabi-Maham et al., 2012). Additionally, M. musculus subspecies of Iran has also been documented secondary contacts with each other (Boursot et al., 1996).

Based on our data, differences in karyotype formulae and asymmetry indexes were found among the Iranian subspecies of house mouse and suggested structural changes that could be contributed the diversification of the populations. In fact, species formed groups with common major karyotype characteristics. Hence, if the mechanisms of speciation within each group involved chromosome rearrangements, these might not be included only structural mutations but included small or cryptic changes. Alternatively, if speciation has occurred as a consequence of large chromosomal modifications, these could not be changed karyotype morphology, such as paracentric inversions or reciprocal translocations with segments of the equal size (Guillermosteijo and Fernandez, 2003). The existence of a similar karyotype in some species suggest that chromosomal evolution in this section may be constrained to non-random changes such as occurrence or fixation of structural rearrangements.

ACKNOWLEDGMENTS
We wish to thank Dr. Janice Britton-Davidian for his great scientific and technical supports. We are also grateful to Dr. Malekzadeh for his generous help and M. Mahmoodi, M. Mohammadyari, M. Habbaby, A. Khajea and A. Khostravi for their efforts in collecting the specimens. This study was supported by a grant (no. 27137) from Ferdowsi University of Mashhad.

LITERATURE CITED

Kazumi, M., Nishida-Umehara, C., Kuroiwa, A., Tsuchiya, K., Matsuda, Y., 2003. Identification of chromosome rearrangements between the laboratory mouse (Mus musculus) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis. Chromosome Research, 11(1), 57-64

