Geometric morphometric analysis in nine species of genus Hottentotta (Birula 1908) (Arachnida: Scorpiones) from Iran

Document Type : Research articles

Authors

1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran

2 Research Department of Zoological Innovations (RDZI), Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Iran

3 Rodentology Research Department (RRD), Institute of Applied Zoology, Faculty of Science, Ferdowsi University of Mashhad, Iran

Abstract

Hottentotta Birula, 1908 is one of the most widely distributed buthid scorpions, with more than 40
described species from Africa, across the Middle East, to India. Currently, this genus is represented
by ten morphological species in Iran (H. akbarii, H. jayakari, H. juliae, H. khoozestanus, H.
lorestanus, H. navidpouri, H. saulcyi, H. schach, H. sistanensis and H. zagrosensis), all of which are
endemic or subendemic in Iran. The members of this genus have not been properly studied from the
taxonomic point of view. A tool that could contribute to scorpions' taxonomic studies is geometric
morphometry, which is defined as the fusion between geometry and biology. In this study, the size
and shape variations in sternocoxal structure in Hottentotta populations have been examined using
the geometric morphometric method. The goal was to analyze the isometric size and conformation in
nine species of Hottentotta. 100 individuals of Hottentotta, collected from different parts of Iran
during 2018-2020, were photographed. Coordinate (x, y) configurations from landmarks were
registered in sternocoxal structures. Geometric morphometric analyses were performed using R
language. The results clearly showed divergence in the shape and size of sternocoxal structure
among the studied taxa. However, the major shape changes were associated with H. akbarii which
has a larger size of sternocoxal structure and a narrower sternum, shorter coxa II-III, and longer
coxa IV.

Keywords

Main Subjects


Barahoei, H., Navidpour, S., & Aliabadian, M. (2020). Scorpiones of Iran (Arachnida: Scorpiones):
Annotated checklist, DELTA database and identification key, Journal of Insect Biodiversity and
Systematics. 06(4), 391–492.
Bechara, W. Y., & Liria, J. (2012). Morfometría geométrica en cinco especies de Buthidae y Scorpionidae
(Arachnida: Scorpiones) de Venezuela Geometric morphometrics in five species of Buthidae and
Scorpionidae (Arachnida Morfometría geométrica en cinco especies de Buthidae y Scorpionida. Revista
Mexicana de Biodiversidad. (83), 421–431.
Bivand, R. (2022). R packages for analyzing spatial data: A comparative case study with areal
data. Geographical Analysis. 54(3), 488-518.
Bookstein, F. L. (1982). Foundation of morphometrics. Annual Review of Ecology and Systematics 13,
451-470.
Burnaby T. P. (1966). Growth-invariant discriminant functions and generalized distances. Biometrics. 22,
96–110.
Chursina, M. A., & Ruchin, A. B. (2018). A checklist of Bombyliidae ( Diptera ) from Mordovia , Russia
and variation of wing shape in Bombylius species. Journal of Biological Diversity. 19(6), 2147–2156.
https://doi.org/10.13057/biodiv/d190622
Claude, J. (2008). Morphometrics with R. (R. Gentleman, K. Hornik, & G. Parmigiani, Eds.). New York:
Springer. https://doi.org/10.1007/978-0-387-77790-0
Fox, N. S., Veneracion, J. J., & Blois, J. L. (2020). Are geometric morphometric analyses replicable?
Evaluating landmark measurement error and its impact on extant and fossil Microtus classification.
Ecology and Evolution, 10(7), 3260–3275. https://doi.org/10.1002/ece3.6063
Gower J. C. (1975). Generalized procrustes analysis. Psychometrika. 40, 33–50.
Hervé, M., & Hervé, M. M. (2020). Package ‘RVAideMemoire’. See https://CRANR-
projectorg/package= RVAideMemoire.
Klingenberg CP., Burluenga M., Meyer A. (2002). Shape analysis of symmetric structures: quantifying
variation among individuals and asymmetry. Evolution. 56, 1909– 1920.
Kovařík, F; Yağmur, E & Moradi, M. (2018). Two New Hottentotta Species from Iran, with a Review of
Hottentotta saulcyi (Scorpiones: Buthidae). Euscorpius, 265, 1–14.
https://doi.org/10.18590/euscorpius.2018.vol2018.iss265.1
GEOMETRIC MORPHOMETRIC ANALYSIS OF THE GENUS HOTTENTOTTA 11
Kovařík, F Yağmur, E & Fet, V. (2019). Review of Hottentotta described by A. A. Birula, with
descriptions of two new species and comments on Birula’s collection (Scorpiones: Buthidae). Euscorpius,
282, 1–30.
Kovařík, F. (2007). A Revision of the Genus Hottentotta Birula, 1908, with Descriptions of Four New
Species (Scorpiones, Buthidae). Euscorpius, 58(58), 1–107.
de Mendiburu, F. (2021). agricolae tutorial (Version 1.3-5). Universidad Nacional Agraria: La Molina,
Peru.
Navarro, N., Zatarain, X., & Montuire, S. (2004). Effects of morphometric descriptor changes on
statistical classification and morphospaces. Biological Journal of the Linnean Society, 83, 243–260.
Without citation in the txt?
Navidpour, Sh., Kovařík, F., Soleglad, M. E., & Fet, V. (2008). Scorpions of Iran (Arachnida,
Scorpiones). Part I. Khoozestan Province. Euscorpius. 65: 1–41.
Navidpour, Sh., Soleglad, M.E., Fet, V., & Kovařík, F. (2013). Scorpions of Iran (Arachnida,
Scorpiones). Part IX. Hormozgan Province, with Description of Odontobuthus Tavighiae Sp. n.
(Buthidae). Euscorpius. 170: 1–29. Paradis, E. and Schliep, K. (2019). ape 5.0: an environment for
modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528.
Nedeljković, Z., Ačanski, J., Dan, M., Obreht-Vidaković, D., Ricarte, A., & Vujić, A. (2015). An
integrated approach to delimiting species borders in the genus Chrysotoxum Meigen, 1803 (Diptera:
Syrphidae), with description of two new species. Contributions to Zoology. 84(4), 285-304.
Pepinelli, M., Spironello, M., & Currie, D. C. (2013). Geometric morphometrics as a tool for interpreting
evolutionary transitions in the black fly wing ( Diptera : Simuliidae). Zoological Journal of the Linnean
Society. 169, 377–388. doi: 10.1111/zoj.12065.
Polis, G. A. 1990. The Biology of Scorpions. Stanford: Stanford University Press. Pp233.
Prenter, J., Elwood, R. W., & Montgomery, W. I. (1999). Sexual size dimorphism and reproductive
investment by female spiders: a comparative analysis. Evolution. 53(6), 1987-1994.
R Core Team. (2022). R: a language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing. Available at: https://www.R-project.org. Accessed 15 January 2022.
Rohlf, F. J. (1990). Rotational fit (Procrustes) methods. In: Rohlf FJ, Bookstein FL, eds. Proceedings of
the Michigan morphometrics workshop. Ann Arbor, MI: Museum of Zoology, University of Michigan,
227–236.
Rohlf, F. J. (2018). TpsDig version 2.31. Ecology and evolution: (program). New York, NY: Suny at
Stony Brook.
Siahsarvie, R., Auffray, J., Darvish, J., Rajabi-maham, H., Yu, H., Agret, S., Claude, J. (2012). Patterns
of morphological evolution in the mandible of the house mouse Mus musculus ( Rodentia : Muridae ),
635–647.
12 IRANIAN JOURNAL OF ANIMAL BIOSYSTEMATICS Vol.19, No.1
Soleglad, M. E., & Fet, V. (2003). The Scorpion Sternum: Structure and Phylogeny (Scorpiones:
Orthosterni). Euscorpius (5), 1–34. Retrieved from http://www.science.marshall.edu/fet/euscorpius/’
Torres, A., & Miranda-Esquivel, D. R. (2016). Wing shape variation in the taxonomic recognition of
species of Diachlorus Osten-Sacken (Diptera: Tabanidae) from Colombia. Neotropical entomology. 45,
180-191.
Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data
visualisations using the grammar of graphics. Version, 2(1), 1-189.
Yezerinac, SM., Loogheed, SC., Handford P. (1992). Measurement error and morphometric studies:
statistical power and observer experience. Systematic Biology. 41, 471–482
CAPTCHA Image